Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint

23 Sep 2021  ·  Paul Hagemann, Johannes Hertrich, Gabriele Steidl ·

To overcome topological constraints and improve the expressiveness of normalizing flow architectures, Wu, K\"ohler and No\'e introduced stochastic normalizing flows which combine deterministic, learnable flow transformations with stochastic sampling methods. In this paper, we consider stochastic normalizing flows from a Markov chain point of view. In particular, we replace transition densities by general Markov kernels and establish proofs via Radon-Nikodym derivatives which allows to incorporate distributions without densities in a sound way. Further, we generalize the results for sampling from posterior distributions as required in inverse problems. The performance of the proposed conditional stochastic normalizing flow is demonstrated by numerical examples.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods