Stochastic Optimization of Smooth Loss

30 Nov 2013Rong Jin

In this paper, we first prove a high probability bound rather than an expectation bound for stochastic optimization with smooth loss. Furthermore, the existing analysis requires the knowledge of optimal classifier for tuning the step size in order to achieve the desired bound... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.