Stochastic Recursive Gradient Descent Ascent for Stochastic Nonconvex-Strongly-Concave Minimax Problems

NeurIPS 2020  ·  Luo Luo, Haishan Ye, Zhichao Huang, Tong Zhang ·

We consider nonconvex-concave minimax optimization problems of the form $\min_{\bf x}\max_{\bf y\in{\mathcal Y}} f({\bf x},{\bf y})$, where $f$ is strongly-concave in $\bf y$ but possibly nonconvex in $\bf x$ and ${\mathcal Y}$ is a convex and compact set. We focus on the stochastic setting, where we can only access an unbiased stochastic gradient estimate of $f$ at each iteration. This formulation includes many machine learning applications as special cases such as robust optimization and adversary training. We are interested in finding an ${\mathcal O}(\varepsilon)$-stationary point of the function $\Phi(\cdot)=\max_{\bf y\in{\mathcal Y}} f(\cdot, {\bf y})$. The most popular algorithm to solve this problem is stochastic gradient decent ascent, which requires $\mathcal O(\kappa^3\varepsilon^{-4})$ stochastic gradient evaluations, where $\kappa$ is the condition number. In this paper, we propose a novel method called Stochastic Recursive gradiEnt Descent Ascent (SREDA), which estimates gradients more efficiently using variance reduction. This method achieves the best known stochastic gradient complexity of ${\mathcal O}(\kappa^3\varepsilon^{-3})$, and its dependency on $\varepsilon$ is optimal for this problem.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here