Stochastic Regret Minimization in Extensive-Form Games

Monte-Carlo counterfactual regret minimization (MCCFR) is the state-of-the-art algorithm for solving sequential games that are too large for full tree traversals. It works by using gradient estimates that can be computed via sampling. However, stochastic methods for sequential games have not been investigated extensively beyond MCCFR. In this paper we develop a new framework for developing stochastic regret minimization methods. This framework allows us to use any regret-minimization algorithm, coupled with any gradient estimator. The MCCFR algorithm can be analyzed as a special case of our framework, and this analysis leads to significantly-stronger theoretical on convergence, while simultaneously yielding a simplified proof. Our framework allows us to instantiate several new stochastic methods for solving sequential games. We show extensive experiments on three games, where some variants of our methods outperform MCCFR.

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here