Stochastic Second-order Methods for Non-convex Optimization with Inexact Hessian and Gradient

26 Sep 2018  ·  Liu Liu, Xuanqing Liu, Cho-Jui Hsieh, DaCheng Tao ·

Trust region and cubic regularization methods have demonstrated good performance in small scale non-convex optimization, showing the ability to escape from saddle points. Each iteration of these methods involves computation of gradient, Hessian and function value in order to obtain the search direction and adjust the radius or cubic regularization parameter. However, exactly computing those quantities are too expensive in large-scale problems such as training deep networks. In this paper, we study a family of stochastic trust region and cubic regularization methods when gradient, Hessian and function values are computed inexactly, and show the iteration complexity to achieve $\epsilon$-approximate second-order optimality is in the same order with previous work for which gradient and function values are computed exactly. The mild conditions on inexactness can be achieved in finite-sum minimization using random sampling. We show the algorithm performs well on training convolutional neural networks compared with previous second-order methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here