Stochastic simulation of residential building occupant-driven energy use in a bottom-up model of the U.S. housing stock

The residential buildings sector is one of the largest electricity consumers worldwide and contributes disproportionally to peak electricity demand in many regions. Strongly driven by occupant activities at home, household energy consumption is stochastic and heterogeneous in nature. However, most residential building energy models applied by industry use homogeneous, deterministic occupant activity schedules, which work well for predictions of annual energy consumption, but can result in unrealistic hourly or sub-hourly electric load profiles, with exaggerated or muted peaks. This mattered less in the past, but the increasing proportion of variable renewable energy generators in power systems means that representing the heterogeneity and stochasticity of occupant behavior is crucial for reliable energy planning. This is particularly true for systems that include distributed energy resources, such as grid-interactive efficient buildings, solar photovoltaics, and battery storage. This work presents a stochastic occupant behavior simulator that models the energy use behavior of individual household members. It also presents an integration with a building stock model to simulate residential building loads more accurately at community, city, state, and national scales. More specifically, we first employ clustering techniques to identify distinct patterns of occupant behavior. Then, we combine time-inhomogeneous Markov chain simulations with probabilistic sampling of event durations to realistically simulate occupant behaviors. This stochastic simulator is integrated with ResStock, a large-scale residential building stock simulation tool, to demonstrate the capability of stochastic residential building load modeling at scale. The simulation results were validated against both American Time Use Survey data and measured end-use electricity data for accuracy and reliability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here