Stochastic Weight Matrix-based Regularization Methods for Deep Neural Networks

26 Sep 2019  ·  Patrik Reizinger, Bálint Gyires-Tóth ·

The aim of this paper is to introduce two widely applicable regularization methods based on the direct modification of weight matrices. The first method, Weight Reinitialization, utilizes a simplified Bayesian assumption with partially resetting a sparse subset of the parameters... The second one, Weight Shuffling, introduces an entropy- and weight distribution-invariant non-white noise to the parameters. The latter can also be interpreted as an ensemble approach. The proposed methods are evaluated on benchmark datasets, such as MNIST, CIFAR-10 or the JSB Chorales database, and also on time series modeling tasks. We report gains both regarding performance and entropy of the analyzed networks. We also made our code available as a GitHub repository (https://github.com/rpatrik96/lod-wmm-2019). read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here