Storyboarding of Recipes: Grounded Contextual Generation

ACL 2019  ·  Ch, Khyathi u, Eric Nyberg, Alan W Black ·

Information need of humans is essentially multimodal in nature, enabling maximum exploitation of situated context. We introduce a dataset for sequential procedural (how-to) text generation from images in cooking domain... The dataset consists of 16,441 cooking recipes with 160,479 photos associated with different steps. We setup a baseline motivated by the best performing model in terms of human evaluation for the Visual Story Telling (ViST) task. In addition, we introduce two models to incorporate high level structure learnt by a Finite State Machine (FSM) in neural sequential generation process by: (1) Scaffolding Structure in Decoder (SSiD) (2) Scaffolding Structure in Loss (SSiL). Our best performing model (SSiL) achieves a METEOR score of 0.31, which is an improvement of 0.6 over the baseline model. We also conducted human evaluation of the generated grounded recipes, which reveal that 61{\%} found that our proposed (SSiL) model is better than the baseline model in terms of overall recipes. We also discuss analysis of the output highlighting key important NLP issues for prospective directions. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here