Streamlining Social Media Information Retrieval for COVID-19 Research with Deep Learning

Objective: Social media-based public health research is crucial for epidemic surveillance, but most studies identify relevant corpora with keyword-matching. This study develops a system to streamline the process of curating colloquial medical dictionaries. We demonstrate the pipeline by curating a UMLS-colloquial symptom dictionary from COVID-19-related tweets as proof of concept. Methods: COVID-19-related tweets from February 1, 2020, to April 30, 2022 were used. The pipeline includes three modules: a named entity recognition module to detect symptoms in tweets; an entity normalization module to aggregate detected entities; and a mapping module that iteratively maps entities to Unified Medical Language System concepts. A random 500 entity sample were drawn from the final dictionary for accuracy validation. Additionally, we conducted a symptom frequency distribution analysis to compare our dictionary to a pre-defined lexicon from previous research. Results: We identified 498,480 unique symptom entity expressions from the tweets. Pre-processing reduces the number to 18,226. The final dictionary contains 38,175 unique expressions of symptoms that can be mapped to 966 UMLS concepts (accuracy = 95%). Symptom distribution analysis found that our dictionary detects more symptoms and is effective at identifying psychiatric disorders like anxiety and depression, often missed by pre-defined lexicons. Conclusions: This study advances public health research by implementing a novel, systematic pipeline for curating symptom lexicons from social media data. The final lexicon's high accuracy, validated by medical professionals, underscores the potential of this methodology to reliably interpret and categorize vast amounts of unstructured social media data into actionable medical insights across diverse linguistic and regional landscapes.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here