Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling

11 Sep 2021  ·  Kookjin Lee, Nathaniel Trask, Panos Stinis ·

Discovery of dynamical systems from data forms the foundation for data-driven modeling and recently, structure-preserving geometric perspectives have been shown to provide improved forecasting, stability, and physical realizability guarantees. We present here a unification of the Sparse Identification of Nonlinear Dynamics (SINDy) formalism with neural ordinary differential equations. The resulting framework allows learning of both "black-box" dynamics and learning of structure preserving bracket formalisms for both reversible and irreversible dynamics. We present a suite of benchmarks demonstrating effectiveness and structure preservation, including for chaotic systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here