Structured Multimodal Attentions for TextVQA

1 Jun 2020 Chenyu Gao Qi Zhu Peng Wang Hui Li Yuliang Liu Anton Van Den Hengel Qi Wu

Text based Visual Question Answering (TextVQA) is a recently raised challenge that requires a machine to read text in images and answer natural language questions by jointly reasoning over the question, Optical Character Recognition (OCR) tokens and visual content. Most of the state-of-the-art (SoTA) VQA methods fail to answer these questions because of i) poor text reading ability; ii) lacking of text-visual reasoning capacity; and iii) adopting a discriminative answering mechanism instead of a generative one which is hard to cover both OCR tokens and general text tokens in the final answer... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet