Active manifolds, stratifications, and convergence to local minima in nonsmooth optimization

26 Aug 2021  ·  Damek Davis, Dmitriy Drusvyatskiy, Liwei Jiang ·

We show that the subgradient method converges only to local minimizers when applied to generic Lipschitz continuous and subdifferentially regular functions that are definable in an o-minimal structure. At a high level, the argument we present is appealingly transparent: we interpret the nonsmooth dynamics as an approximate Riemannian gradient method on a certain distinguished submanifold that captures the nonsmooth activity of the function. In the process, we develop new regularity conditions in nonsmooth analysis that parallel the stratification conditions of Whitney, Kuo, and Verdier and extend stochastic processes techniques of Pemantle.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here