Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices

11 Apr 2017  ·  Cameron Musco, David P. Woodruff ·

We show how to compute a relative-error low-rank approximation to any positive semidefinite (PSD) matrix in sublinear time, i.e., for any $n \times n$ PSD matrix $A$, in $\tilde O(n \cdot poly(k/\epsilon))$ time we output a rank-$k$ matrix $B$, in factored form, for which $\|A-B\|_F^2 \leq (1+\epsilon)\|A-A_k\|_F^2$, where $A_k$ is the best rank-$k$ approximation to $A$. When $k$ and $1/\epsilon$ are not too large compared to the sparsity of $A$, our algorithm does not need to read all entries of the matrix... Hence, we significantly improve upon previous $nnz(A)$ time algorithms based on oblivious subspace embeddings, and bypass an $nnz(A)$ time lower bound for general matrices (where $nnz(A)$ denotes the number of non-zero entries in the matrix). We prove time lower bounds for low-rank approximation of PSD matrices, showing that our algorithm is close to optimal. Finally, we extend our techniques to give sublinear time algorithms for low-rank approximation of $A$ in the (often stronger) spectral norm metric $\|A-B\|_2^2$ and for ridge regression on PSD matrices. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here