Submanifold density estimation

NeurIPS 2009  ·  Arkadas Ozakin, Alexander G. Gray ·

Kernel density estimation is the most widely-used practical method for accurate nonparametric density estimation. However, long-standing worst-case theoretical results showing that its performance worsens exponentially with the dimension of the data have quashed its application to modern high-dimensional datasets for decades. In practice, it has been recognized that often such data have a much lower-dimensional intrinsic structure. We propose a small modification to kernel density estimation for estimating probability density functions on Riemannian submanifolds of Euclidean space. Using ideas from Riemannian geometry, we prove the consistency of this modified estimator and show that the convergence rate is determined by the intrinsic dimension of the submanifold. We conclude with empirical results demonstrating the behavior predicted by our theory.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here