Subspace Perspective on Canonical Correlation Analysis: Dimension Reduction and Minimax Rates

12 May 2016Zhuang MaXiaodong Li

Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure between two sets of random variables. In this paper, motivated by recent success of applying CCA to learn low dimensional representations of high dimensional objects, we propose to quantify the estimation loss of CCA by the excess prediction loss defined through a prediction-after-dimension-reduction framework... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet