Subtle Data Crimes: Naively training machine learning algorithms could lead to overly-optimistic results

16 Sep 2021  ·  Efrat Shimron, Jonathan I. Tamir, Ke Wang, Michael Lustig ·

While open databases are an important resource in the Deep Learning (DL) era, they are sometimes used "off-label": data published for one task are used for training algorithms for a different one. This work aims to highlight that in some cases, this common practice may lead to biased, overly-optimistic results. We demonstrate this phenomenon for inverse problem solvers and show how their biased performance stems from hidden data preprocessing pipelines. We describe two preprocessing pipelines typical of open-access databases and study their effects on three well-established algorithms developed for Magnetic Resonance Imaging (MRI) reconstruction: Compressed Sensing (CS), Dictionary Learning (DictL), and DL. In this large-scale study we performed extensive computations. Our results demonstrate that the CS, DictL and DL algorithms yield systematically biased results when naively trained on seemingly-appropriate data: the Normalized Root Mean Square Error (NRMSE) improves consistently with the preprocessing extent, showing an artificial increase of 25%-48% in some cases. Since this phenomenon is generally unknown, biased results are sometimes published as state-of-the-art; we refer to that as subtle data crimes. This work hence raises a red flag regarding naive off-label usage of Big Data and reveals the vulnerability of modern inverse problem solvers to the resulting bias.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here