Sum-of-Squares Polynomial Flow

7 May 2019  ·  Priyank Jaini, Kira A. Selby, Yao-Liang Yu ·

Triangular map is a recent construct in probability theory that allows one to transform any source probability density function to any target density function. Based on triangular maps, we propose a general framework for high-dimensional density estimation, by specifying one-dimensional transformations (equivalently conditional densities) and appropriate conditioner networks. This framework (a) reveals the commonalities and differences of existing autoregressive and flow based methods, (b) allows a unified understanding of the limitations and representation power of these recent approaches and, (c) motivates us to uncover a new Sum-of-Squares (SOS) flow that is interpretable, universal, and easy to train. We perform several synthetic experiments on various density geometries to demonstrate the benefits (and short-comings) of such transformations. SOS flows achieve competitive results in simulations and several real-world datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here