Supervised Kernel Descriptors for Visual Recognition

In visual recognition tasks, the design of low level image feature representation is fundamental. The advent of local patch features from pixel attributes such as SIFT and LBP, has precipitated dramatic progresses. Recently, a kernel view of these features, called kernel descriptors (KDES) [1], generalizes the feature design in an unsupervised fashion and yields impressive results. In this paper, we present a supervised framework to embed the image level label information into the design of patch level kernel descriptors, which we call supervised kernel descriptors (SKDES). Specifically, we adopt the broadly applied bag-of-words (BOW) image classification pipeline and a large margin criterion to learn the lowlevel patch representation, which makes the patch features much more compact and achieve better discriminative ability than KDES. With this method, we achieve competitive results over several public datasets comparing with stateof-the-art methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here