Support Recovery in Universal One-bit Compressed Sensing

19 Jul 2021  ·  Arya Mazumdar, Soumyabrata Pal ·

One-bit compressed sensing (1bCS) is an extreme-quantized signal acquisition method that has been intermittently studied in the past decade. In 1bCS, linear samples of a high dimensional signal are quantized to only one bit per sample (sign of the measurement). The extreme quantization makes it an interesting case study of the more general single-index or generalized linear models. At the same time it can also be thought of as a `design' version of learning a binary linear classifier or halfspace-learning. Assuming the original signal vector to be sparse, existing results in 1bCS either aim to find the support of the vector, or approximate the signal within an $\epsilon$-ball. The focus of this paper is support recovery, which often also computationally facilitate approximate signal recovery. A \emph{universal} measurement matrix for 1bCS refers to one set of measurements that work \emph{for all} sparse signals. With universality, it is known that $\tilde{\Theta}(k^2)$ 1bCS measurements are necessary and sufficient for support recovery (where $k$ denotes the sparsity). In this work, we show that it is possible to universally recover the support with a small number of false positives with $\tilde{O}(k^{3/2})$ measurements. If the dynamic range of the signal vector is known, then with a different technique, this result can be improved to only $\tilde{O}(k)$ measurements. Other results on universal but approximate support recovery are also provided in this paper. All of our main recovery algorithms are simple and polynomial-time.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here