Paper

Sure Screening for Gaussian Graphical Models

We propose {graphical sure screening}, or GRASS, a very simple and computationally-efficient screening procedure for recovering the structure of a Gaussian graphical model in the high-dimensional setting. The GRASS estimate of the conditional dependence graph is obtained by thresholding the elements of the sample covariance matrix. The proposed approach possesses the sure screening property: with very high probability, the GRASS estimated edge set contains the true edge set. Furthermore, with high probability, the size of the estimated edge set is controlled. We provide a choice of threshold for GRASS that can control the expected false positive rate. We illustrate the performance of GRASS in a simulation study and on a gene expression data set, and show that in practice it performs quite competitively with more complex and computationally-demanding techniques for graph estimation.

Results in Papers With Code
(↓ scroll down to see all results)