Symplectic Geometric Methods for Matrix Differential Equations Arising from Inertial Navigation Problems

11 Feb 2020  ·  Xin-long Luo, Geng Sun ·

This article explores some geometric and algebraic properties of the dynamical system which is represented by matrix differential equations arising from inertial navigation problems, such as the symplecticity and the orthogonality. Furthermore, it extends the applicable fields of symplectic geometric algorithms from the even dimensional Hamiltonian system to the odd dimensional dynamical system. Finally, some numerical experiments are presented and illustrate the theoretical results of this paper.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here