Synapse Compression for Event-Based Convolutional-Neural-Network Accelerators

13 Dec 2021  ·  Lennart Bamberg, Arash Pourtaherian, Luc Waeijen, Anupam Chahar, Orlando Moreira ·

Manufacturing-viable neuromorphic chips require novel computer architectures to achieve the massively parallel and efficient information processing the brain supports so effortlessly. Emerging event-based architectures are making this dream a reality. However, the large memory requirements for synaptic connectivity are a showstopper for the execution of modern convolutional neural networks (CNNs) on massively parallel, event-based (spiking) architectures. This work overcomes this roadblock by contributing a lightweight hardware scheme to compress the synaptic memory requirements by several thousand times, enabling the execution of complex CNNs on a single chip of small form factor. A silicon implementation in a 12-nm technology shows that the technique increases the system's implementation cost by only 2%, despite achieving a total memory-footprint reduction of up to 374x compared to the best previously published technique.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here