Synchronization in networked systems with large parameter heterogeneity

16 Apr 2023  ·  Amirhossein Nazerian, Shirin Panahi, Francesco Sorrentino ·

Systems that synchronize in nature are intrinsically different from one another, with possibly large differences from system to system. While a vast part of the literature has investigated the emergence of network synchronization for the case of small parametric mismatches, we consider the general case that parameter mismatches may be large. We present a unified stability analysis that predicts why the range of stability of the synchronous solution either increases or decreases with parameter heterogeneity for a given network. We introduce a parametric approach, based on the definition of a curvature contribution function, which allows us to estimate the effect of mismatches on the stability of the synchronous solution in terms of contributions of pairs of eigenvalues of the Laplacian. For cases in which synchronization occurs in a bounded interval of a parameter, we study the effects of parameter heterogeneity on both transitions (asynchronous to synchronous and synchronous to asynchronous.)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here