Synthesis for Vesicle Traffic Systems

10 Oct 2018  ·  Ashutosh Gupta, Somya Mani, Ankit Shukla ·

Vesicle Traffic Systems (VTSs) are the material transport mechanisms among the compartments inside the biological cells. The compartments are viewed as nodes that are labeled with the containing chemicals and the transport channels are similarly viewed as labeled edges between the nodes. Understanding VTSs is an ongoing area of research and for many cells they are partially known. For example, there may be undiscovered edges, nodes, or their labels in a VTS of a cell. It has been speculated that there are properties that the VTSs must satisfy. For example, stability, i.e., every chemical that is leaving a compartment comes back. Many synthesis questions may arise in this scenario, where we want to complete a partially known VTS under a given property. In the paper, we present novel encodings of the above questions into the QBF (quantified Boolean formula) satisfiability problems. We have implemented the encodings in a highly configurable tool and applied to a couple of found-in-nature VTSs and several synthetic graphs. Our results demonstrate that our method can scale up to the graphs of interest.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here