Taming Cross-Domain Representation Variance in Federated Prototype Learning with Heterogeneous Data Domains

14 Mar 2024  ·  Lei Wang, Jieming Bian, Letian Zhang, Chen Chen, Jie Xu ·

Federated learning (FL) allows collaborative machine learning training without sharing private data. While most FL methods assume identical data domains across clients, real-world scenarios often involve heterogeneous data domains. Federated Prototype Learning (FedPL) addresses this issue, using mean feature vectors as prototypes to enhance model generalization. However, existing FedPL methods create the same number of prototypes for each client, leading to cross-domain performance gaps and disparities for clients with varied data distributions. To mitigate cross-domain feature representation variance, we introduce FedPLVM, which establishes variance-aware dual-level prototypes clustering and employs a novel $\alpha$-sparsity prototype loss. The dual-level prototypes clustering strategy creates local clustered prototypes based on private data features, then performs global prototypes clustering to reduce communication complexity and preserve local data privacy. The $\alpha$-sparsity prototype loss aligns samples from underrepresented domains, enhancing intra-class similarity and reducing inter-class similarity. Evaluations on Digit-5, Office-10, and DomainNet datasets demonstrate our method's superiority over existing approaches.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here