Targets in Reinforcement Learning to solve Stackelberg Security Games

Reinforcement Learning (RL) algorithms have been successfully applied to real world situations like illegal smuggling, poaching, deforestation, climate change, airport security, etc. These scenarios can be framed as Stackelberg security games (SSGs) where defenders and attackers compete to control target resources. The algorithm's competency is assessed by which agent is controlling the targets. This review investigates modeling of SSGs in RL with a focus on possible improvements of target representations in RL algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here