Teaching machines to understand data science code by semantic enrichment of dataflow graphs

16 Jul 2018  ·  Evan Patterson, Ioana Baldini, Aleksandra Mojsilovic, Kush R. Varshney ·

Your computer is continuously executing programs, but does it really understand them? Not in any meaningful sense. That burden falls upon human knowledge workers, who are increasingly asked to write and understand code. They deserve to have intelligent tools that reveal the connections between code and its subject matter. Towards this prospect, we develop an AI system that forms semantic representations of computer programs, using techniques from knowledge representation and program analysis. To create the representations, we introduce an algorithm for enriching dataflow graphs with semantic information. The semantic enrichment algorithm is undergirded by a new ontology language for modeling computer programs and a new ontology about data science, written in this language. Throughout the paper, we focus on code written by data scientists and we locate our work within a larger movement towards collaborative, open, and reproducible science.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here