Templateless Quasi-rigid Shape Modeling with Implicit Loop-Closure

CVPR 2013  ·  Ming Zeng, Jiaxiang Zheng, Xuan Cheng, Xinguo Liu ·

This paper presents a method for quasi-rigid objects modeling from a sequence of depth scans captured at different time instances. As quasi-rigid objects, such as human bodies, usually have shape motions during the capture procedure, it is difficult to reconstruct their geometries. We represent the shape motion by a deformation graph, and propose a model-to-part method to gradually integrate sampled points of depth scans into the deformation graph. Under an as-rigid-as-possible assumption, the model-to-part method can adjust the deformation graph non-rigidly, so as to avoid error accumulation in alignment, which also implicitly achieves loop-closure. To handle the drift and topological error for the deformation graph, two algorithms are introduced. First, we use a two-stage registration to largely keep the rigid motion part. Second, in the step of graph integration, we topology-adaptively integrate new parts and dynamically control the regularization effect of the deformation graph. We demonstrate the effectiveness and robustness of our method by several depth sequences of quasi-rigid objects, and an application in human shape modeling.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here