Temporal Autoencoding Improves Generative Models of Time Series

12 Sep 2013  ·  Chris Häusler, Alex Susemihl, Martin P Nawrot, Manfred Opper ·

Restricted Boltzmann Machines (RBMs) are generative models which can learn useful representations from samples of a dataset in an unsupervised fashion. They have been widely employed as an unsupervised pre-training method in machine learning. RBMs have been modified to model time series in two main ways: The Temporal RBM stacks a number of RBMs laterally and introduces temporal dependencies between the hidden layer units; The Conditional RBM, on the other hand, considers past samples of the dataset as a conditional bias and learns a representation which takes these into account. Here we propose a new training method for both the TRBM and the CRBM, which enforces the dynamic structure of temporal datasets. We do so by treating the temporal models as denoising autoencoders, considering past frames of the dataset as corrupted versions of the present frame and minimizing the reconstruction error of the present data by the model. We call this approach Temporal Autoencoding. This leads to a significant improvement in the performance of both models in a filling-in-frames task across a number of datasets. The error reduction for motion capture data is 56\% for the CRBM and 80\% for the TRBM. Taking the posterior mean prediction instead of single samples further improves the model's estimates, decreasing the error by as much as 91\% for the CRBM on motion capture data. We also trained the model to perform forecasting on a large number of datasets and have found TA pretraining to consistently improve the performance of the forecasts. Furthermore, by looking at the prediction error across time, we can see that this improvement reflects a better representation of the dynamics of the data as opposed to a bias towards reconstructing the observed data on a short time scale.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here