Tensor-based Multi-view Spectral Clustering via Shared Latent Space

23 Jul 2022  ·  Qinghua Tao, Francesco Tonin, Panagiotis Patrinos, Johan A. K. Suykens ·

Multi-view Spectral Clustering (MvSC) attracts increasing attention due to diverse data sources. However, most existing works are prohibited in out-of-sample predictions and overlook model interpretability and exploration of clustering results. In this paper, a new method for MvSC is proposed via a shared latent space from the Restricted Kernel Machine framework. Through the lens of conjugate feature duality, we cast the weighted kernel principal component analysis problem for MvSC and develop a modified weighted conjugate feature duality to formulate dual variables. In our method, the dual variables, playing the role of hidden features, are shared by all views to construct a common latent space, coupling the views by learning projections from view-specific spaces. Such single latent space promotes well-separated clusters and provides straightforward data exploration, facilitating visualization and interpretation. Our method requires only a single eigendecomposition, whose dimension is independent of the number of views. To boost higher-order correlations, tensor-based modelling is introduced without increasing computational complexity. Our method can be flexibly applied with out-of-sample extensions, enabling greatly improved efficiency for large-scale data with fixed-size kernel schemes. Numerical experiments verify that our method is effective regarding accuracy, efficiency, and interpretability, showing a sharp eigenvalue decay and distinct latent variable distributions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods