Tensor Completion via Integer Optimization

6 Feb 2024  ·  Xin Chen, Sukanya Kudva, Yongzheng Dai, Anil Aswani, Chen Chen ·

The main challenge with the tensor completion problem is a fundamental tension between computation power and the information-theoretic sample complexity rate. Past approaches either achieve the information-theoretic rate but lack practical algorithms to compute the corresponding solution, or have polynomial-time algorithms that require an exponentially-larger number of samples for low estimation error. This paper develops a novel tensor completion algorithm that resolves this tension by achieving both provable convergence (in numerical tolerance) in a linear number of oracle steps and the information-theoretic rate. Our approach formulates tensor completion as a convex optimization problem constrained using a gauge-based tensor norm, which is defined in a way that allows the use of integer linear optimization to solve linear separation problems over the unit-ball in this new norm. Adaptations based on this insight are incorporated into a Frank-Wolfe variant to build our algorithm. We show our algorithm scales-well using numerical experiments on tensors with up to ten million entries.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here