Tensor Completion via Leverage Sampling and Tensor QR Decomposition for Network Latency Estimation

27 Jun 2023  ·  Jun Lei, Ji-Qian Zhao, Jing-Qi Wang, An-Bao Xu ·

In this paper, we consider the network latency estimation, which has been an important metric for network performance. However, a large scale of network latency estimation requires a lot of computing time. Therefore, we propose a new method that is much faster and maintains high accuracy. The data structure of network nodes can form a matrix, and the tensor model can be formed by introducing the time dimension. Thus, the entire problem can be be summarized as a tensor completion problem. The main idea of our method is improving the tensor leverage sampling strategy and introduce tensor QR decomposition into tensor completion. To achieve faster tensor leverage sampling, we replace tensor singular decomposition (t-SVD) with tensor CSVD-QR to appoximate t-SVD. To achieve faster completion for incomplete tensor, we use the tensor $L_{2,1}$-norm rather than traditional tensor nuclear norm. Furthermore, we introduce tensor QR decomposition into alternating direction method of multipliers (ADMM) framework. Numerical experiments witness that our method is faster than state-of-art algorithms with satisfactory accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here