Tensor Recovery from Noisy and Multi-Level Quantized Measurements

5 Dec 2019  ·  Ren Wang, Meng Wang, JinJun Xiong ·

Higher-order tensors can represent scores in a rating system, frames in a video, and images of the same subject. In practice, the measurements are often highly quantized due to the sampling strategies or the quality of devices. Existing works on tensor recovery have focused on data losses and random noises. Only a few works consider tensor recovery from quantized measurements but are restricted to binary measurements. This paper, for the first time, addresses the problem of tensor recovery from multi-level quantized measurements. Leveraging the low-rank property of the tensor, this paper proposes a nonconvex optimization problem for tensor recovery. We provide a theoretical upper bound of the recovery error, which diminishes to zero when the sizes of dimensions increase to infinity. Our error bound significantly improves over the existing results in one-bit tensor recovery and quantized matrix recovery. A tensor-based alternating proximal gradient descent algorithm with a convergence guarantee is proposed to solve the nonconvex problem. Our recovery method can handle data losses and do not need the information of the quantization rule. The method is validated on synthetic data, image datasets, and music recommender datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here