Ternary Hybrid Neural-Tree Networks for Highly Constrained IoT Applications

4 Mar 2019  ·  Dibakar Gope, Ganesh Dasika, Matthew Mattina ·

Machine learning-based applications are increasingly prevalent in IoT devices. The power and storage constraints of these devices make it particularly challenging to run modern neural networks, limiting the number of new applications that can be deployed on an IoT system... A number of compression techniques have been proposed, each with its own trade-offs. We propose a hybrid network which combines the strengths of current neural- and tree-based learning techniques in conjunction with ternary quantization, and show a detailed analysis of the associated model design space. Using this hybrid model we obtained a 11.1% reduction in the number of computations, a 52.2% reduction in the model size, and a 30.6% reduction in the overall memory footprint over a state-of-the-art keyword-spotting neural network, with negligible loss in accuracy. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here