Testing and Confidence Intervals for High Dimensional Proportional Hazards Model

16 Dec 2014  ·  Ethan X. Fang, Yang Ning, Han Liu ·

This paper proposes a decorrelation-based approach to test hypotheses and construct confidence intervals for the low dimensional component of high dimensional proportional hazards models. Motivated by the geometric projection principle, we propose new decorrelated score, Wald and partial likelihood ratio statistics. Without assuming model selection consistency, we prove the asymptotic normality of these test statistics, establish their semiparametric optimality. We also develop new procedures for constructing pointwise confidence intervals for the baseline hazard function and baseline survival function. Thorough numerical results are provided to back up our theory.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here