Reconstructing decision trees

16 Dec 2020  ·  Guy Blanc, Jane Lange, Li-Yang Tan ·

We give the first {\sl reconstruction algorithm} for decision trees: given queries to a function $f$ that is $\mathrm{opt}$-close to a size-$s$ decision tree, our algorithm provides query access to a decision tree $T$ where: $\circ$ $T$ has size $S = s^{O((\log s)^2/\varepsilon^3)}$; $\circ$ $\mathrm{dist}(f,T)\le O(\mathrm{opt})+\varepsilon$; $\circ$ Every query to $T$ is answered with $\mathrm{poly}((\log s)/\varepsilon)\cdot \log n$ queries to $f$ and in $\mathrm{poly}((\log s)/\varepsilon)\cdot n\log n$ time. This yields a {\sl tolerant tester} that distinguishes functions that are close to size-$s$ decision trees from those that are far from size-$S$ decision trees. The polylogarithmic dependence on $s$ in the efficiency of our tester is exponentially smaller than that of existing testers. Since decision tree complexity is well known to be related to numerous other boolean function properties, our results also provide a new algorithms for reconstructing and testing these properties.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here