TFPred: Learning Discriminative Representations from Unlabeled Data for Few-Label Rotating Machinery Fault Diagnosis

Recent advances in intelligent rotating machinery fault diagnosis have been enabled by the availability of massive labeled training data. However, in practical industrial applications, it is often challenging and costly to annotate a large amount of data. To address the few-label fault diagnosis problem, a time–frequency prediction (TFPred) self-supervised learning framework is proposed to extract latent fault representations from unlabeled fault data. Specifically, the TFPred framework consists of a time encoder and a frequency encoder, with the frequency encoder to predict the low-dimensional representations of time domain signals generated by the time encoder with randomly augmented data. Subsequently, the pre-trained network is hooked with a classification head and fine-tuned with limited labeled data. Finally, the proposed framework is evaluated on a run-to-failure bearing dataset and a hardware-in-the-loop high-speed train simulation platform. The experiments demonstrate that the self-supervised learning framework TFPred achieved competitive performance with only 1% and 5% labeled data. Code is available at https://github.com/Xiaohan-Chen/TFPred.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here