A Rigorous Runtime Analysis of the $(1 + (λ, λ))$ GA on Jump Functions

14 Apr 2020  ·  Denis Antipov, Benjamin Doerr, Vitalii Karavaev ·

The $(1 + (\lambda,\lambda))$ genetic algorithm is a younger evolutionary algorithm trying to profit also from inferior solutions. Rigorous runtime analyses on unimodal fitness functions showed that it can indeed be faster than classical evolutionary algorithms, though on these simple problems the gains were only moderate. In this work, we conduct the first runtime analysis of this algorithm on a multimodal problem class, the jump functions benchmark. We show that with the right parameters, the \ollga optimizes any jump function with jump size $2 \le k \le n/4$ in expected time $O(n^{(k+1)/2} e^{O(k)} k^{-k/2})$, which significantly and already for constant~$k$ outperforms standard mutation-based algorithms with their $\Theta(n^k)$ runtime and standard crossover-based algorithms with their $\tilde{O}(n^{k-1})$ runtime guarantee. For the isolated problem of leaving the local optimum of jump functions, we determine provably optimal parameters that lead to a runtime of $(n/k)^{k/2} e^{\Theta(k)}$. This suggests some general advice on how to set the parameters of the \ollga, which might ease the further use of this algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods