The Algorithmic Phase Transition of Random $k$-SAT for Low Degree Polynomials

3 Jun 2021  ·  Guy Bresler, Brice Huang ·

Let $\Phi$ be a uniformly random $k$-SAT formula with $n$ variables and $m$ clauses. We study the algorithmic task of finding a satisfying assignment of $\Phi$. It is known that satisfying assignments exist with high probability up to clause density $m/n = 2^k \log 2 - \frac12 (\log 2 + 1) + o_k(1)$, while the best polynomial-time algorithm known, the Fix algorithm of Coja-Oghlan, finds a satisfying assignment at the much lower clause density $(1 - o_k(1)) 2^k \log k / k$. This prompts the question: is it possible to efficiently find a satisfying assignment at higher clause densities? We prove that the class of low degree polynomial algorithms cannot find a satisfying assignment at clause density $(1 + o_k(1)) \kappa^* 2^k \log k / k$ for a universal constant $\kappa^* \approx 4.911$. This class encompasses Fix, message passing algorithms including Belief and Survey Propagation guided decimation (with bounded or mildly growing number of rounds), and local algorithms on the factor graph. This is the first hardness result for any class of algorithms at clause density within a constant factor of that achieved by Fix. Our proof establishes and leverages a new many-way overlap gap property tailored to random $k$-SAT.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here