The Computational Complexity of Single-Player Imperfect-Recall Games

28 May 2023  ·  Emanuel Tewolde, Caspar Oesterheld, Vincent Conitzer, Paul W. Goldberg ·

We study single-player extensive-form games with imperfect recall, such as the Sleeping Beauty problem or the Absentminded Driver game. For such games, two natural equilibrium concepts have been proposed as alternative solution concepts to ex-ante optimality. One equilibrium concept uses generalized double halving (GDH) as a belief system and evidential decision theory (EDT), and another one uses generalized thirding (GT) as a belief system and causal decision theory (CDT). Our findings relate those three solution concepts of a game to solution concepts of a polynomial maximization problem: global optima, optimal points with respect to subsets of variables and Karush-Kuhn-Tucker (KKT) points. Based on these correspondences, we are able to settle various complexity-theoretic questions on the computation of such strategies. For ex-ante optimality and (EDT,GDH)-equilibria, we obtain NP-hardness and inapproximability, and for (CDT,GT)-equilibria we obtain CLS-completeness results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here