The Discrete Langevin Machine: Bridging the Gap Between Thermodynamic and Neuromorphic Systems

16 Jan 2019  ·  Lukas Kades, Jan M. Pawlowski ·

A formulation of Langevin dynamics for discrete systems is derived as a class of generic stochastic processes. The dynamics simplify for a two-state system and suggest a network architecture which is implemented by the Langevin machine. The Langevin machine represents a promising approach to compute successfully quantitative exact results of Boltzmann distributed systems by LIF neurons. Besides a detailed introduction of the dynamics, different simplified models of a neuromorphic hardware system are studied with respect to a control of emerging sources of errors.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here