The Evolution of Sex through the Baldwin Effect

1 Jul 2016  ·  Larry Bull ·

This paper suggests that the fundamental haploid-diploid cycle of eukaryotic sex exploits a rudimentary form of the Baldwin effect. With this explanation for the basic cycle, the other associated phenomena can be explained as evolution tuning the amount and frequency of learning experienced by an organism. Using the well-known NK model of fitness landscapes it is shown that varying landscape ruggedness varies the benefit of the haploid-diploid cycle, whether based upon endomitosis or syngamy. The utility of pre-meiotic doubling and recombination during the cycle are also shown to vary with landscape ruggedness. This view is suggested as underpinning, rather than contradicting, many existing explanations for sex.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here