The expressive power of kth-order invariant graph networks

23 Jul 2020  ·  Floris Geerts ·

The expressive power of graph neural network formalisms is commonly measured by their ability to distinguish graphs. For many formalisms, the k-dimensional Weisfeiler-Leman (k-WL) graph isomorphism test is used as a yardstick. In this paper we consider the expressive power of kth-order invariant (linear) graph networks (k-IGNs). It is known that k-IGNs are expressive enough to simulate k-WL. This means that for any two graphs that can be distinguished by k-WL, one can find a k-IGN which also distinguishes those graphs. The question remains whether k-IGNs can distinguish more graphs than k-WL. This was recently shown to be false for k=2. Here, we generalise this result to arbitrary k. In other words, we show that k-IGNs are bounded in expressive power by k-WL. This implies that k-IGNs and k-WL are equally powerful in distinguishing graphs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods