The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers

We derive here new generalization bounds, based on Rademacher Complexity theory, for model selection and error estimation of linear (kernel) classifiers, which exploit the availability of unlabeled samples. In particular, two results are obtained: the first one shows that, using the unlabeled samples, the confidence term of the conventional bound can be reduced by a factor of three; the second one shows that the unlabeled samples can be used to obtain much tighter bounds, by building localized versions of the hypothesis class containing the optimal classifier.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here