The Information Complexity of Learning Tasks, their Structure and their Distance

5 Apr 2019  ·  Alessandro Achille, Giovanni Paolini, Glen Mbeng, Stefano Soatto ·

We introduce an asymmetric distance in the space of learning tasks, and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine-tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset, and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity, Shannon, and Fisher Information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in Deep Learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here