The local low-dimensionality of natural images

20 Dec 2014Olivier J. HénaffJohannes BalléNeil C. RabinowitzEero P. Simoncelli

We develop a new statistical model for photographic images, in which the local responses of a bank of linear filters are described as jointly Gaussian, with zero mean and a covariance that varies slowly over spatial position. We optimize sets of filters so as to minimize the nuclear norms of matrices of their local activations (i.e., the sum of the singular values), thus encouraging a flexible form of sparsity that is not tied to any particular dictionary or coordinate system... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet