The Max $K$-Armed Bandit: A PAC Lower Bound and tighter Algorithms

23 Aug 2015  ·  Yahel David, Nahum Shimkin ·

We consider the Max $K$-Armed Bandit problem, where a learning agent is faced with several sources (arms) of items (rewards), and interested in finding the best item overall. At each time step the agent chooses an arm, and obtains a random real valued reward. The rewards of each arm are assumed to be i.i.d., with an unknown probability distribution that generally differs among the arms. Under the PAC framework, we provide lower bounds on the sample complexity of any $(\epsilon,\delta)$-correct algorithm, and propose algorithms that attain this bound up to logarithmic factors. We compare the performance of this multi-arm algorithms to the variant in which the arms are not distinguishable by the agent and are chosen randomly at each stage. Interestingly, when the maximal rewards of the arms happen to be similar, the latter approach may provide better performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here