The planted matching problem: Sharp threshold and infinite-order phase transition

17 Mar 2021  ·  Jian Ding, Yihong Wu, Jiaming Xu, Dana Yang ·

We study the problem of reconstructing a perfect matching $M^*$ hidden in a randomly weighted $n\times n$ bipartite graph. The edge set includes every node pair in $M^*$ and each of the $n(n-1)$ node pairs not in $M^*$ independently with probability $d/n$. The weight of each edge $e$ is independently drawn from the distribution $\mathcal{P}$ if $e \in M^*$ and from $\mathcal{Q}$ if $e \notin M^*$. We show that if $\sqrt{d} B(\mathcal{P},\mathcal{Q}) \le 1$, where $B(\mathcal{P},\mathcal{Q})$ stands for the Bhattacharyya coefficient, the reconstruction error (average fraction of misclassified edges) of the maximum likelihood estimator of $M^*$ converges to $0$ as $n\to \infty$. Conversely, if $\sqrt{d} B(\mathcal{P},\mathcal{Q}) \ge 1+\epsilon$ for an arbitrarily small constant $\epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$ under both the sparse and dense model, resolving the conjecture in [Moharrami et al. 2019, Semerjian et al. 2020]. Furthermore, in the special case of complete exponentially weighted graph with $d=n$, $\mathcal{P}=\exp(\lambda)$, and $\mathcal{Q}=\exp(1/n)$, for which the sharp threshold simplifies to $\lambda=4$, we prove that when $\lambda \le 4-\epsilon$, the optimal reconstruction error is $\exp\left( - \Theta(1/\sqrt{\epsilon}) \right)$, confirming the conjectured infinite-order phase transition in [Semerjian et al. 2020].

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here