The Recurrent Neural Tangent Kernel

18 Jun 2020Sina AlemohammadZichao WangRandall BalestrieroRichard Baraniuk

The study of deep networks (DNs) in the infinite-width limit, via the so-called Neural Tangent Kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DN architecture remains to be kernelized, namely, the Recurrent Neural Network (RNN)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet