The sample complexity of multi-distribution learning

7 Dec 2023  ·  Binghui Peng ·

Multi-distribution learning generalizes the classic PAC learning to handle data coming from multiple distributions. Given a set of $k$ data distributions and a hypothesis class of VC dimension $d$, the goal is to learn a hypothesis that minimizes the maximum population loss over $k$ distributions, up to $\epsilon$ additive error. In this paper, we settle the sample complexity of multi-distribution learning by giving an algorithm of sample complexity $\widetilde{O}((d+k)\epsilon^{-2}) \cdot (k/\epsilon)^{o(1)}$. This matches the lower bound up to sub-polynomial factor and resolves the COLT 2023 open problem of Awasthi, Haghtalab and Zhao [AHZ23].

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here